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Sb}IMARY

A joint U.S. Army Aviation Materiel Laboratories/NASA-Ames/Bell
Helicopter Company experimental investigation of full-scale
rotor blades was conducted in the NASA-Ames Large Scale Wind
Tunnel. Specifically, a UH-lB 44-foot-diameter rotor having
reduced-thickness tips was evaluated in a range of Mach numbers
up to 0.94 and advance ratios of up to 0.52. Additionally,
UH-ID rotor blade 11uced in dia4 meter to 3'4 feet were tes.ted
at advance ratios _ LP to i.1. Calculated performance is com-
pared with the experimental results obtained to establish the
validity of the theoretical technique at high advance ratios.
In general, it was found that quasi-static, two-dimensional
techniques were adequate up to an advance ratio of about 0.5.
Above this advance ratio, theoretical techniques break down,
especially with respect to calculating rotor propulsive force
or drag.

Theory-experiment com1..-ison with the 44-foot-diameter rotor,
operated at high Mach numbers, showed that Mach number effects
are predictable to an advance ratio of at least 0.45.

The 34-foot-diameter rotor became increasingly sensitive to
control input with advance ratio. At an advance ratio of 1.1,
this rotor system displayed a long transient response to a
control input before obtaining its steady-state orientation,
and at the largest values of collective pitch, the flapping
would not completely stabilize.
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The results from the full-scale rotor performance tests of a
two-bladed semirigid rotor sistem are contained in this re-
port. The tests were ccnductead in the Large 5cale Wind Tuonel
at NASA-Ames Research Center. The project was performed under
Contract DAAJ02-67-C-0061 (Task IF162204AI3903) under the
rechnicel cognizance of Patrick Cancro, Project Enstineer, U'S.
Army Aviation Materiel Laboratories.

The Bell Helicopter Ccmpany program was conducted under the
technical direction of J. F. Van Wyckhouse, Project Engineer,
with the assistance of B. Charles, Research Aerodynamics;
W. Wilson. Dynamics; A. Gravely Dynamic Structures; and N. T.
Will'ems, Administration. The assistance, cooperation, and
active participation of John McCloud, III, and James Biggera
of the IPASA-Ames Research Center, in organizing and conducting

Sthp tests, are gratefully acknowledged.
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LIST OF SYMBOLS

a Speed of sound, ft/sec

a1 • a 2  Components of longitudinal flapping with respect
s s to the shaft. Constant coefficients of the

an cosine terms in the Fourier series expressing
ans flapping with respect to a plane normal to the

shaft axis, deg

A1  Lateral cyclic pitch with respect to the shaft
s axis, deg

b Number of blades

b, b Component of lateral flapping with respect tos s the shaft axis. Constant coefficients of the
b sine terms of the Fourier series expressing

ns flapping with respect to a plane normal to the
shaft axis, deg

B! Longitudinal cyclic pitch with respect to the
s shaft axis, deg

c Blade chord, ft

CD/0- Rotor drag coefficient, CD/o- D/pbcR(flR) 2

ACD/6- Drag coefficient difference, ACD/a- = CD/0-test
CD/ theory

CL/0c Rotor lift coefficient, CL/a- = L/pbcR(flR) 2

CQ/0- Rotor torque coefficient, CQ /0 = Q/pbcR 2(fR)2

ACQ /6- Torque coefficient difference, ACQ/0 = C /Artes- t
SCQ/0-theory

D Drag, the component of the resultant force
parallel to the relative wind direction, positive
in the downwind direction, ].b

f Equivalent flat plate area, D/q, ft2

L Lift, the component of rotor resultant force per-
pendicular to the relative wind direction in the
plane of the relative wind and the shaft,
positive up, lb

xi
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Rolling moment, the moment about the x axis,
positive clo.'kwise looking upstream, ft-lb

H Mach number, M - V/a

4 '(i.0, 90.) Advancing tip Mach number, M(I.0' 90.) = (V + fkR)/a j

Pitching moment, the moment about the y axis,
positive nose up, ft-lb

'awing moment, the moment about the z axis,
positive clockwise from above, ft-lb

q Dynamic pressure, lb/sq ft

Q Shaft torque, the moment about the shaft z axis,
positive when torque tends to accelerate the
rotor, ft-lb

F. Rotor radius, ft

V Forward speed, ft/sec

Y Force perpendicular to L and D forces, po3itive
to the right when viewed from downstream, lb

a iShaft angle of sttack, the angle between the
relative wind and a plane normal to the shaft
axis, positive. in nose-up direction, deg

a,, Control axis angle of attack, the angle between
the relative wind, the shaft axis, and the pro-
jection of the control axis on the plane of the
relative wind axis, positive in nose-up direction,
deg

0.75R Blade collective pitch angle measured at 0.75R,
deg

VAdvance ratio, =

p Density of air, slugs/ft 3

cr Rotor solidity, o =-

Rotor shaft angular vel.ocity, rad/sec

Systems of Axes

1. Wind axis system:



xw Longitudinal Wind Axis. Axis lying along theairstream or relative wind direction.

zw Normal Wind Axis. Axis perpendicular to the
longitudinal wind axis in the plane of the windaxis and the shaft centerline.

Yw Lateral Wind Axis. Axis perpendicular to the
xw and zw axes.

2. Shaft axis syst'em:

z Shaft Axis. Axis coIncident with the shaft
s centerline.

xs Longitudinal Shaft Axis. Axis perpendicular
to the shaft axis, in the plane of the shaft
axis and relative wind direction.

ys Lateral Shaft Kris. Axis perpendicular to
the xs qnd zs axes. This axis is coincident
with the lateral Yw wind axis,

3. Control qxis syatem;

z Control Axis, Axis of no feathering. Axis with
reference to which there is no firsi: harmonic
pitch change with azimuth angle. Thi3 axis may
be tilted with respect to the shaft longitu-
dinally (with Bl.) and laterally (with Als),
aeparataly or in combination.

x Lungitudinal P-cis. Axis perpendicular to the
control axis in the plane of the control axis
and the relative wind direction.

Yc Lateral Axis. Axis perpendicular to the xC
and z. axes.

4. Virtual axis system:

zv Virtual axis. Axis of no flapping. Axis with
v respect to which there is no first harmonic

blade flapping. This axis is perpendicular to
the "tip path plans" for zero flapping hinge
offset.

xv Longitudinal Axis. Axis perpendicular Co the
vertical axis in the plane of the virtual axis
and the relative w4 nd direction.

YV Lateral Axis. Axis perpendicular to the x.
and Zv axes.

xiii
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INTRODUCTION

As the state of the art of rotary-wing aircraft advances, it
becomes increasingly evident that high advance ratios and high
Mach numbers will become standard operating conditions of
future rotorcraft. In fact, several compound research air-
craft, capable of exploring these regions, have been or are
being flown. Presently,'existing experimental research consists
mainly of scale model rotor tests, such as described in RRf-
erence I, and the limited full-scale wind tunnel high advance-U ratio tests, as described in Reference 2. It has been well
established that scale model data obtained in air cannot be
extrapolated to full-scale results because of the Reynolds
number effects. Scale results where ReynoldF, number is main-
tained by using mediums other than air, such ar. freon, are not
yet available. The limited full-scale semirigid rotor results
of Reference 2 were not sufficient for adequate performance
correlation and evaluation of theoretical techniques at high
advance ratios. References 3 and 4 are representative of the
existng state of the art of performance calculations, and
both are widely accepted.

Clearly, more full-scale data at high advance ratios must be
acquired under controlled conditions. The NASA-Ames Large
Scale Wind Tunnel is the only facility where these data can be
obtained. Flight test results are not sufficiently accurate
to evaluate these regions of flight or tu correlate with
theoretical techniques in detail. In free flight, conditions
cannot: be carefully controlled; and as yet, instrumentation
techniques have not been evolved to measure rotor forces ac-
curately. Thus. this program was undertaken to provide:

1. 7ull-scale semirigid rotor performance results at
high advance ratios

2. Exploration of the flight test envelope of the
U.S. Army Aviation Materiel Laboratories-Bell
Helicopter High Performance Helicopter (HPH)

Specifically, a 34-foot-diameter, low-twist rotor was tested
up to advance ratios of 1.1; and a 44-foot-diameter, low-
twist, thin-tip rotor designed for the HPH was tested in an
HPH flight regime up to Mach numbers of 0.94 and advance
ratios of 0.52. Additionally, state-of-the-art performance
calculations were compared with the test results obtained.

21
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TEST EQUIPMENT

ROTOR TEST MODULE

Figure I shows the rotor test module in the NASA-Ames 40- x
80-faoft Wind Tunnel. The mounting frame, pylon, and drive
system are enclosed by an aerodynamic fairing of tear-drop
shape. The maximum diameter of the fairing is 6.66 feet, and
the length is 22 feet. Further description of the Cst module,
power distribution panel, control module, and associated in-
strumentation may be found in Appendix II of Reference 5.

ROTOR SYSTEM AND BLADES

Two 2-bladed, semirigid rotor systems using a UH-ID underslung
feathering axis hub were tested. The 44-foot-diameter rotor
system had modified UH-IB blades incorporating reduced-
thickness tips and low aerodynamic twist. The 34-foot-diameter
rotor system had modified low-twist UH-IB blades of reduced
diameter. The purpose of the reduced-diameter rotor was to
lower the rotational velocity (OR) without requiring changes
in the standard UH-ID transmission so that high advance ratios
(VAIR) could be obtained. Basic data for these rotors are
given below:

34-Foot Rotor

Airfoil Designation (Root to Tip) NACA 0012
Chord 1.75 t
Diameter 34 ft
Twist -1.42 deg
Disc Area 908 ft 2

Solidity .0656
Effective Root Cutout 11.8 pcz
Lock Number 3.62

44-Foot Tapered Tip Rotor

t • Airfoil Designation

Root to .78R NACA 0012
.78R to Tip Uniform Thickness Change
Tip NACA 0006 Mod (See

Table I)
Chord 1.175 ft
Diameter 44 ft
Twist -1. 83 djg
Disc Area 1520 ft
Solidity .0506
Effective Root Cutout 9.1 pct
Lock Number 7.05

2
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TABLE 1. AIRXMIL CONTOURS,* STATION 264.0
(in percent of airfoil chord)

Upper Surface Lower Surfa-e
Station Ordinate Ordinate

0 -. 547 -. 647
.5 .004 -1.219

1.0 .290 -i.419
2.0 .i09 -1.66:1
3.0 1.028 -1.819
4.0 1. 300 -i.9185.C 1.528 -2.03310.0 2.30'•4 -2.380

12.0 2.'485 -2.50014.0 2.619 -2.z;19
20.0 2.866 -2.866
25.0 2.971 -2.971
30.0 3.000 -3.000
40.0 2.900 -2.900
50.0 2.647 -2.647
60.0 2.281 -2.281
70.0 1.833 -1.833
78.0 1.419 -1.419
86.0 1.047 -1.047
98.7 .276 -. 276

100.0 .128 -. 128

*NOTE NACA Airfoil Conventions Observed

INSTRUME NTAT ION

Instrumentation was installed to provide rotor and control
position data and for monitoring structural loads during the
tests. The loads data were monitored by digital readout
and oscilloscope and were recorded on magnetic tape using a
contractor supplied data acquisition system. Control posi-
tion data were displayed in digital form on a test control.
console and were recorded by hapd entry in the teal- log.

Leads data were obtained from foil type (350 ohm) strain
gages wired into four active arm bridees and excited by a
common DC voltage. The strain gage sensitivities were deter-
mined by direct calibration through the expect'2 operating
range. The loed equivalent electrical outpuit "as obtained
using a precision resistor ahunt on one leg of the bridge.
Position data were obtained from potentiometers used as

* voltage dividers. Positions were calibrated by m&'iog the
4 hardware incrementally through the full operating ranges and

plotting electrical output versus mechanical position.

3



2 TEST RESULTS
•' GM•ERAI DTSCUSSIONS- • •\i - -' '-

-' The advamfe ratio and Me4ch nimbc-r eombinatioas teste-. with
the -44-foot and 34-foot-diameter rotors are ahowt, iii Table III -and Taole III; reepectively.

- TABLE II. 44-FOOT-DIA?4ETER ROTOR

ADVANCE RATIO TIP K&CH NUMBER

M( 1 .0 90.'1

0.31 0.88
0.36 0.80
S036 0.90
0.40 0.85

0,-41 0.914
0.45 0.77
0.45 0.90
0.46 0.86
0.51 0.80
0.52 (.61

TABLE Iii. 34-F0OOT-DLAMETER R.OTORC

ADVANCE RATIO _,P M&CH NUMBER
I M(1-0 90.)

0.51 0.64
0.65 0.54
0.76 0.50
0.86 0.47
0.94 0°49
1.1 0,51

A graphical presentation of the 44-foot-diameter rotor data
= aad the complete NASA-Ames balance data reduction tabulation

are presented in Appendixes I and II, respectively. In addi-
- • t•ha ,%,,Fn-man .o data, rotor system loads ae.d moments

were recorded. The principal purpose of monitoring these data
was to assure that maximum acceptable structural loadings were
not exceeded and to detect the onset of possible dynamic or
aercelastic problems.

4
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TESTINGO PROCEDURE

F'or the 4 4 -foot-diameter rztor at each particular test -.ondi-tion, the rotor rotlational speed anl the tunnel speed w~exc ad-juste~d to malintairt constant values of rotor advance -reio andadv~ancing tip Mach number. The rotor shaft angie (tecý- m'odule-pitch) and r'Mtor coilect've pitch wexe then varied in Lvý_n in-crements to -,,tap the test" envelcrpe. The rotor cyclic WiCch w&Zadj~isted to mninimi~ze the first harmonic flpigwith- re~peccto the rotor shaft, and data were recorded at each ir'-rsuiertas'combination of shaft angle and collective pitch.

The method used for the 34-fooc-.diametev rotor w~as I-,ghtlydifferenit. Since tha 40- x 80-foot Large Scale W-*.id ITu~mnel ~sspeed limited (VMax 190 knots), the procp.dure 1ýed w-3s to f ixthe tunn-al speed and adjust the rotor rotationr\.L spaed to ob-tain hiqh advance ratios. The Mach number thu. obtained variedwith advance ratio but is believedi to be sataJ.1 enough in magnt-tude to be discounted as a prime variable (M~(,. 0.0 1=O47to 0.64). Orice the test con~ditions were - .'ea. t!' .otor shaftangle (test module pitch), and Loto clctivre pitchi wer' hevaried in even increments to map the t.est envelope. Via rotorcyclic pitch was adjusted to min-.*ize tne first Larmonic flap-.ping with rcapec' to thc . otor- shaft, and data were rs-crordeda-- each increme'ntal ý'ombinsation of shaft angle and collectiv'epitch.

Tkhz wind tunnel balance data were recorded by NASA-Azxes. Theaedata, which appear in Appendix 11, were resolved suci' thatall forces were in the relativa wind axis systam, and allmoments were transferred f-7o.n balance resolving center to thecenter of rotation of the -.otor hub and P'efnrenced to thesnaf t axis system.

DISCUSSION OF RESULTS AND COMPARISON WITH THEORY

Des'-ription of the Theory

Since Reference 3 is a widely ac--epted :.rethod for calculat'ngrotororaft performance, it was des-irable to correlate the ex-perimental results of this te-.t wiL.% th,- charts of Reference3. However, direct co!=_rison was not possible for two rea-sonx,- (L) the test 11Mach iiumbe~rs were significantly lower, and"~2) thi. test blade solidity was near the lower limit recommend-.ed in Reference 3. Therefore, a rotor performance calculatingtechnique based upon Reference 6 was modified to duplicate thecharts of Reference 3. The theoretical program also included* the simplifying assumptions of that reference, which are:

1. iwo-dimensional, steady-state flow is assumed ateach blade element.
2. Radial velocity effects are neglected.
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S. The blade is considered to be rigid.
-4- . Rotor inflo% is assumed to be constant over the disc.

Furthermore, the techniqae used thea airioil data of Kif.reanee

3 and Was checked qut against the tables of Reference 7.

S•Re ference 3 's assumptic nf canstanr rotational spe-ed about
the shaft ass is not applicable to the. semirigid roto_. The
•issumption CP uiifcrm inflow is believed to be valid for these
comparisons, especially for the 35 -foot rotor, where the ad-
vance ratio is high and the hinduceýd relocity is small "ompared
to the Zorward velocity. Aerodynamically, then, assumptione I

*-and 2 are of pi-ime interest; however, it ie beyord the ecope
-of this report to isolate th -rious aerodynamic effecto or
to offer an improved calculating technique. References 8 andl
9 give some insight into radial flow and unsteady effects.

Reference 5 presents theory-experiment comparison using the
,forementioned asslimptions ard shows good correlation at low
advance raticz and ttig' ativac-ing tip 1tach naumb.ers.

hL4-Foot-Dia-meter Rotor

Previous correlations, Reterence 5, have shown •ood agreement
-at low edvan-e ratto and high advancing tip Mach number for
both standard and thin-.:ipp"ed VK-1]D rotors. In this eectio.,
"theory is compared witi ru:l-scals. test ata ohbVained with a
UH-iB 44-foot-diameter. low-t, ist, thin-tipped rotor. The
regime of operating eon-ý.tions tested (advance ratio and ad-
vancing tip Macli numbev) partial)y overlapQ thp-t of the
earlier +est (Reference 5) bat extends to highier advance
ratios.

The experimental data, Figure 2, are peesented in the carpet

plot format of Refereance 3 for three 1i.'t coefficient-
tolidity ratios. Escn Prapit contains the rotor performance
for a given Mach number and advance ratio. The validity of
t theoretically determined rotor perfc.rnance at the same opera-
tiag conditions is lilustrated by comparing the experimental
data with the dashed-line the3ry curves. In Figure 2(a-c),
these test-theory correlations are shown for advance ratios
of 0.36, 0.45 and 0.51, while the Mach number is held approxi-
metely constant: M(l.0, 90.) = 0.8, 1he calculated perfor-
mance shn-swa acc ptablt agreemen wi WL-t- test resu *-a.S 1

0.36; but as the advance ratio is increased to P = 0.45, the
agreement begins to deteriorate, particularly at high lift
coefficients. Finally, at P = 0.51, the test data exhibit
sizably larger torque coefficients than theory would predict
for any given rotor resultant force shown (resultant force
coefficient C 2 + CD2).

6



Confirmation of this trend i3 also found at higher. Maex. -

numbe::s. Figur"ps 2d aad 2e prebent tne performance e;oCrre-
lation at A = 0.36 and A' = 0.45 for an advstnc;tng tl-p M~ach
number Ma5j.o 90 = 0.9. The test-theory differences at Q
0.83 Mach nmnter are nearly identical with the 0.9 Mach number
caboe stto ens 0.45 advace atio. That nth oblyseprved thferne
casOe for 0.45ts advanc rniatio. this oth obl nprsere dithern
are nearly Lndependent of the advancing tip Mach numbe-r.

To surmmarize the4e trt-,ds graphicaill, the test-theory differ-
er---es of Figure 2 are shown cross-plotted (for CL/frr 0.01'
r.nd CD/o- 0) as funttions of advance ratio arcd Mach numL~er
in Figure 3. The impormant featiore, shown in Figure 3s, Ls
the rapid divergence of test theory agreement with advance Al
ratio in t.he A = 0.4 to 0.5 range. In dimensional form, the
0.8 Mach number curve would indicate that theory underestimaces
the power requiiad by 43 H.P at P = 0.4, whereas Eor 9 = 0.51
the discrepancy ica equal to 137 HP. Further, i.n Figure !3b,
the A~ = 0.45 curve tiould zhow that at M(1.0, g0.) = 0.R the

poa ~f,~~ 3Hwhile. at M(l. 0 ý,) 0.9 it 16
55 HP, ir~dicating the iz~ak influence of advancing tip Ylac~i
rw~m1er on the adt~arce ratio trend.

34-i'oot-DiamzterR(,or

Correlation with the 44-foot-diametsr rotor data has irzicovere~i
the inability 3f theory to predict rotor performance at moder-
ateil,' high advance ratios. lu this 2,-0ion, the test..th-o~ry
compariions are extended to advanc2 rqtios Srpater than anitv1,
and they show that agreement continues to griw worse a6 the
advance ratio is increastJ beyond :1-- 0.5. TAhese results are
not entire!;? trnexpected, h-wever, as quasi-static, rigid bladtt
theory doe.3 not account "'or the nonlinearities as.vociated with
high advance ratio operation 01 radial flzaw and aniteady
e -ffects.

The major drawback of the theory is its failure co v'ield the
correct rotor propul.sive torce (or CD/o-) E")r advance ratios
much above P = 0.3.. This is illustrated iii F.gure 14, whch
presents arag coetfficent/fiolidity versus angle of attacR et
cornetant- colloctive pitches for &a ,',rice ratio 4:,f O.8G.
On this figar2, the dashea axis corr-. ,3onds to the theory
axiz sh,- has been shifted 9.005 aloing the CD./b- ord-inate.
and I deg..ee along the control angle of attack abscissa iv,
orrer to~ make the exc-crixnental and calcvr.-lted results agree.
To show~ -he order of magnitude of this e-rror, the tollowing
numerical '.xarmple is used. For pL = 0.86 ct M4(1.0, 9j0,) = 0.90,
the fcrward np*ýed is 253 knots, a normal comrpolind helicopter
opc:7Ating ~c(ndition. For the UH-liB 4'+-foot-diameter rotor,

P/-' O.,q05 (the trror in minimum drag coeffiecient/solidity
on Figure 4 betwezn theory and test) corresponds trn an

7



equivalent flat plate drag area (f) of 1.7 square feet. A well
designed compound helicopter cruising at this speed at minimum
drag coefficient would have a totr'l f of about Ir sqaare feet.
Therefore, if the thrusting power plants were ' .ed to the
theoretical minimum rotor drag, the aircraft would be under-
powered by from 15% to 20%O at 255 knots.

The vertical axis shift (CD/A) required to make the state-of-
the-art calculated results agree with experiment is defined as
the drag coefficient difference, ACD/0- (ACD/0- = CD/0-test
CD/ctheory). This drag coefficient difference versus advance
ratio is graphed on Figure 5 (note that the Mach number also
varies from 0.47 to 0.64). The values of the circular symbol
points in Figure 5 have been obtained from the test-theory cor-
relations presented in Figures 6b through lib and represent the
magnitude of the theory-ordinate shift necessary to give good
agreement between the theoretical and experimental drag curves.
Therefore, when viewing these drag curves, it iL important to
realize that the theoretical values (dashed lines) are graphed
with respect to an axis which is shifted relative to the axis
containing the experimental values. The same technique has
been applied to previous high advance ratio results (Reference
2). These results, denoted by triangular symbols, indicate
the same trend with advance ratio and confirm the magnitude of
test-theory drag differences. The variation is linear with
advance ratio, indicating that this error cannot be attributed
to a test inaccuracy such as a tare force (probably the most
common testing error), sinrýe an error in a drag tare would re-
sult in a paxabolic variation, not a straight line as shown on
the figure.

An obvious second error would be that th,-, two-dimensional
drag coefficients used in the calcuLation were optimistic.
TI - can be discounted for two reasons: (i) in the previous
section, good performance correlation was obtaiaed at low
advance ratio with the same airfoil data, and (2) reasonable
power correlation was obtained throughout the advance ratio
range, and if the airfoil drag coeffit.ients were increased
sufficiently to get CD/a- agreement, large overestimations of
the power required would result.

The previous paragraphs have pointed out one serious short-
ccoming of the present state-of-the-art performance calculating
technique which can create serious problems for all high ad-
vance ratio machines. The calculated propulsion force re-
q'aired to overcome the rotor drag is optimistic.

For the lift and torque curves of Figures 6 through l1, no
shift was made in the axes. Tý.iory and test are graphed
with resp.±ct to the same ordinate and abscissa. If a shift
in the control axis angle of attack had been made, the lift
and torque correlatioýns below rotor stall would be improved

8
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for the lower collective pitches. At the higher collectives, ,
however, this shift would produce an over-correction.

A second test-theory discrepancy which may also be a problem
for all compounds and stopped-rotor vehicles is that the
theory predicts che wrong trends in autorotation at riigh
advance ratios. This is shown in Figure 12, which gives the
lift variation in autorotation at several advatice ratios with
control axis angle of attack. First, examine the calculated
performance (dashed lines). The theory shows a rotation of
the autorotation line with advance ratio for all advance
ratios. At ac = 0, the autorctating lift increases with ad-
vance ratio; at negative angles of attack greater than 2
degrees, the lift decreases with advance ratio. The same
trend, with a displacement of the curves to the right is
shown for the experimental results (solid lines) ap to an
advance ratio of 0.94. However, at A = k.l, the nexe test
advance ratio, the autorotative lift ,-mbins constant at a
high value with angle of attack.

To illustrate the practical importance of the difference be-
tween the test and the calculated results, consider the
following situation. A compound helicopter has a total power
failure at p = 1.1 (V = 300 kts, UR = 460 ft/sec), and the
machine is configured to enter autorotation at a = -20. The
theory shows that the rotor lift is about 2000 pounds for the
UH-l rotor, but the test results give a 4000-pound rotor lift,
twice that expectfe. This compounds the designer's classic
problem of the cc. ound helicopter, which is to "dump" the
wing lift in high-speed autorotation, since the rotor is pro-
ducing more lift then expeted. Thpfnr, to maintain a
reasonable rate of descent compatible with building up rotor
rpm, morp wing lift must be "dumped" than anticipated. This
is a serious matter in practical design, and the data of
Figure 12 indicate chat the problem will remain even at an
advance ratio of 0.5.

A third possible problem for all high advance ratio machines
is shown in Figure 13, which is a graph of mean lift curve
slope versus advance ratio. Both the theory and test resilts
show negative slopes in the area of p = 0.9, a possible in-
stability. In addition to the possible problem area, this
figure also shows t.-, the calculated lift curve slopes are
good, and the theory also gives the points of inflection and
the possible instability.

For the first time, sufficient data have been recorded with
this rotor to expose another phenomenon apparently caused by
autorotation at high advance ratios. Figures 7 and 8 s;hw
that as the rotor enters autorotation at low collective
pitches (most notably at 0.75R = 00), the lift, drag, andtorque curves exhibit irregular values. No exp1.anation for
the phenomenon has been found. However, it can.-ot be

9



attributed to scatter in the test data, since it was repeatable
by entering autorotation from both the positive and tbh negao.
tive torque side.

In addition to the phenomenon described above, the rotor system
also had a relatively long transient response to a control
input at the highest test aovance ratio (A = 1.1). With a
corntrol input from a steady-state condition, the rotor would
"wander" before it reached a new steady-state orientation.
The transient response motion was small in magnitude and could

% I not be detected by eye, but it was detectable on the rotor
flapping monitoring inatrumentation, which was designed to
measure flapping motion of less than 0.1 degree.

At 1.]. advance ratio, rotor sensitivity increased with in-
creased collective pitch and became the limiting factor in
"the test. At the highest collective pitch for each shaft
angle tested, the rotor flapping would no longer stabilize;
and although the magnitudes of the transient flapping excur-
"sions were small, it was considered unsafe to test beyond the
highest collective pitches given in Figure 10 with this parti-
cular 34-foot-diameter rotor system.

1

I "
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CONC LUC IONS

Full-scale rotor performance data up to an advance ratio of
1.1 and au advancing tip Mach number of 0.94 have been analyzed
and compared with theoretical techniques of Reference 3 to
yield the followir.: conclusions:

Comparison o! the 44-foot-diame -r rotor data with
theory shows that agreement deteriorates rapidly
with advarce ratio above 1 = 0.4 and that Mach

number has little effect on this trend.

Theoretical correlatisns with the high advance
ratio data (A = 0.5 to 1.1) sbcw that theory
predicts optimistic values of rotor propulsive
force.

Based upon quasi-static, two-dimensional tech-
niaues, theoretical predictions of advance ratio
effects break down in the range A = 0.4 to 0.5
and should be used with extreme caution to obtain
magnitude above A -- 0.5.

In general, the theory shows the proper trends
with advance ratio even when the magnitude of
the drag does not correlate well. An exception
to this is at the advance ratio of 1.1, where
the theory did not properly predict the autoro-
tation trends.

No stability limits were encountered in the 0.5
Mach number range for advance ratios up to 1.0;
however, both test and theory show the existence
of a possible instability near i z- 0.9.

At an advance ratio of 1.1, the rotor system dis-
played a long transient response to a control in-
put before the steady-state orientation was
achieved for all test conditions. At the highest
test collective pitch, the flapping would not
completely stabilize.

!i
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Figure L. Full-Scale Rotor Wind Tuunel T.st Module

in the NASA-Ames 4•0- x 80-Foot Wind Tunnel.
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APPENDIX I
GRAPHED DATA

The data preseitted in this appendix (Figures 14 through 23) are
from the wind tunnel balance and model instrumentation as tabu-
lated in AppendLx IV. The symbols are actual test points and
show lift, drag, and torque coefficients as a fcnction of col-
lective pitch (0.75R). These data illustrate the consistency
of the experimental results.

Rotor rotational speed and tunnel speed were adjusted to obtain
the desired advance ý'atio and advancing tip Mach number. The
cyclic pitch was adjusted to minimize first harmonic rotor
flapping; and at each canbination of shaft angle and collective
pitch, the data were recorded. Collective pitch or shaft angle
was then changed, and the above procedure was repeated until
the envelope was explored.
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APPENDIX 1I
TABULAR DATA

The data presented in this appendix were recorded by the Large
Scale Aerodynamic Brqnch of the NASA-Ames Research Center.
Table IV relates the test conditions, rotor configuration,
and the page nunmber where these data are presented.

Data Reduction

Six-component forces and moments were measured by the wind i
tunnel balance system. Tare corrections were applied to the
balance data to account for forces and moments produced by
the exposed model support struts, the faired body, and the
rotating hub. The rotating hub tares included all hardware
inboard Gf the 2.66-foot radius station. The tares were
applied based on wind tunnel dynamic pressure and shaft angle.
Rotor downwash effects on the tares were neglected, and no
data adjustments were made for wall effects.
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TABLE I%. WIND TUNNEL TABULATED DATA

Table Page
Number Description Number

44-Foot-Diameter Rotor

IV-1 IL= 0.31, M1 =0.88 67

IV-2 i= 0.36, M(I 0  90) =0.80 68

IV-3 ;x= 0.36, M.0v 90.) =0.90 69

IV-4 j= 0.401, M(1.0 90.) -083 70

IV-5 /z= 0.41, M(1.04 90.) 0.94 71

IV-6 A= 0.45, M(1.0' 90.) 0.77 72

IV-7 = 0.45, M(1.0' 90.)= 0.90 73

IV-8 f= 0.46, M. =0.86 74
(1.0, 90.)

IV-9 IA= 0.51, M(., 90.) 75

.A-1 L= 0.52, M(. 90.) = 0.81 76

34-Foot-Diameter Rotor

IV-ll Iu= 0.51, M(.O 90.) =0.64 77

IV-12 •- 0.65, M 0.54 79

IV-13 Il= 0.76, MI 90.) =0.50 80
(1.0, 0.

IV-14 P= 0.86, M C.0' 90.) =0.47 81

IV-15 /= 0.94, M(1.0' 90.) = 0.49 82

IV-16 - 1.10, M(1.04 90.) 0.51
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IS. ASSTRACT

Ajoint U.S. Army Aviat*Aon Materisl Laboratories/NASA-Ames/*Bell
Helicopter Company experimental investigation of full-scale rotor blades
was conducted in the NASA-Ames Large Scale Wind Tunnel. Specifically, a
UH-lB 44-foot--diameter rotor havintg reduced-thickness tips was evaluated

* in a range of Mach numbers up to 0.94 and advance ratios of up to 0.52.
Additionally, UH-ID rotor blades reduced in diameter to 34 feet were
tested at: advance ratios of up to 1.1. Calculated performance is comn-
pared with the experimental results obtained to establish the validity
of the theoretical technique at high advance ratios. In general, it was
fo-nd that quasi-static, two-dimensional tec*hniques were adequate up to
an advance ratio of about 0.5. Above this advance ratio, theoretical
techniques break down, especially with respect to calculating rotor pro-
pulsive force or drag. Theory-experiment comparison with the 44-foot-
diameter rotor, operated at high Mach numbers, showed that Mach number
effects are predictable to an advance ratio of at least 0.45. The 34-
foot-diame~er rotor became increasingly sensitive to control input with
advance ratio. At an advance ratio of 1.1, this rotor system displayed
a long transient response to a control input before obtaining its steady-
state orientation, and at the largest values of collective pitch, the
flapping would not completely stabilize.
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